Airborne wind lidar observations in the North Atlantic in preparation for the ADM-Aeolus validation

18th Coherent Laser Radar Conference, Boulder, CO, USA

O. Reitebuch1, Ch. Lemmerz1, U. Marksteiner1, S. Rahm1, A. Schäfler1, B. Witschas1, D. Emmitt2, S. Greco2, M. J. Kavaya3, B. Gentry4, R. R. Neely III5, D. Schüttemeyer6

1DLR, 2SWA, 3NASA LaRC, 4NASA GSFC, 5Uni Leeds, 6ESA-ESTEC

Fig.: ESA/ATG-Medialab
ADM-Aeolus WindVal

First time with 4 Wind Lidars on 2 aircrafts
ADM-Aeolus WindVal

David and Goliath

Falcon, DLR

DC-8, NASA
Wind lidars on Falcon (DLR) and DC-8 (NASA)
Setup overview
Wind lidars on Falcon (DLR) and DC-8 (NASA)

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DLR A2D</th>
<th>NASA TWiLiTE</th>
<th>DLR 2-µm DWL</th>
<th>NASA 2-µm DAWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>354.9 nm</td>
<td>354.7 nm</td>
<td>2022.5 nm</td>
<td>2053.5 nm</td>
</tr>
<tr>
<td>Laser energy</td>
<td>50-60 mJ</td>
<td>25 mJ</td>
<td>1-2 mJ</td>
<td>100 mJ (nominal 250 mJ)</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>50 Hz</td>
<td>200 Hz</td>
<td>500 Hz</td>
<td>5 Hz (nominal 10 Hz)</td>
</tr>
<tr>
<td>Pulse FWHM</td>
<td>20 ns</td>
<td>15 ns</td>
<td>400-500 ns</td>
<td>180 ns</td>
</tr>
<tr>
<td>Telescope Ø</td>
<td>20 cm</td>
<td>32 cm (eff.)</td>
<td>10.8 cm</td>
<td>15 cm</td>
</tr>
<tr>
<td>Scanner</td>
<td>No, fixed 20° off-nadir</td>
<td>step-stare conical scanning with 45° off-nadir</td>
<td>double wedge, conical scan, fixed LOS and vertical</td>
<td>single wedge, conical scan, fixed 30.12° off-nadir with 5 LOS in fwd. dir.</td>
</tr>
<tr>
<td>Random error</td>
<td>1.5 m/s Mie</td>
<td>2 m/s</td>
<td>< 1 m/s</td>
<td>< 1 m/s</td>
</tr>
<tr>
<td></td>
<td>2 m/s to 2.5 m/s Rayleigh</td>
<td>2 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection and Calibration (signal to frequency)</td>
<td>direct; yes, atmosphere and internal</td>
<td>direct; yes, internal</td>
<td>coherent, no need for calibration</td>
<td>coherent, no need for calibration</td>
</tr>
</tbody>
</table>
Greenland summit observations
3216 m asl., 72.6° N

- HALO Photonics 1.55 µm DWL
- MPL lidar
- Radiosondes
- Cloud Radar
- 2 radiosondes per day
- Thanks to support of NSF and ESA

Midnight over Summit on May 21, 2015 seen from DLR Falcon aircraft
Falcon (DLR) and DC-8 (NASA) flight tracks in May 2015
Objectives for ALADIN airborne demonstrator A2D

A2D first direct-detection airborne wind lidar in 2005 [1]
Wind along East Coast of Greenland in 2009 [2]

- Validate instrument and its calibration with real atmospheric signals
- More than 100 recommendations were derived for Aeolus related to alignment, operation, tests, calibration, algorithm and processors => DLR is responsible for end-to-end Simulator, algorithm and operational processors up to L1b
- A2D will be airborne testbed and central validation platform after launch

[1] Reitebuch et al., JTECH, 2009

18th CLRC - Boulder – July 1, 2016
Slightly higher standard deviation (1.5 m/s, 5.2°) for dropsonde/lidar comparison than observed for DLR-NCAR (AVAPS) dropsondes.

Weissmann et al. (2005): 1-1.2 m/s
Chouza et al. (2016): 0.9 m/s
Results
A2D Mie and Rayleigh LOS winds from 25 May 2015

Mie
flight altitude = 10.65 km
cloud layer
sea surface

Rayleigh

South of Iceland
36 minutes 121 observations
Results
Comparison A2D and 2-μm Wind Lidar

A2D Rayleigh

2-μm wind lidar

good comparison with 5% slope error, 1.7 m/s std. and 0.5 m/s systematic difference

Statistical results

corr. coeff. r 0.92
N points 991
slope 1.05
std. dev. 1.66 m/s
avg. Bias 0.46 m/s
Results

Textbook Example of “Iceland”
Low Pressure System

Track of DLR Falcon and NASA DC 8

MSG SEVIRI HRV Image – 18 UTC; from the Icelandic Met Service IMO
Results

Comparison Jet-Stream Winds from ECMWF model vs. 2-μm Lidar

Up to -9.2 m/s

Up to -13.5 %
• First time that 4 wind lidars were operated on 2 aircrafts in parallel
• Most extensive data set of wind profiles in the North Atlantic region
• Comparison of DC-8 dropsondes and DLR 2-μm wind lidar shows no bias and std. dev. of 1.5 m/s and 5° for horizontal wind
• Comparison of DLR direct-detection and coherent wind lidar with std. dev. of 1.7 m/s for LOS wind speed
• Comparison of DLR 2-μm wind lidar with ECMWF model shows overall good agreement except for underestimation of jet stream wind speed by up to 9 m/s (14%)
• Successful rehearsal for future validation of ADM-Aeolus with DLR and NASA airborne wind lidars
OUTLOOK: NAWDEX in September-October 2016

- North Atlantic Waveguide and Downstream Impact Experiment
- Operation center in Keflavik, Iceland from 19 September – 16 October 2016
- Deployment of HALO, DLR Falcon and French Falcon with extensive lidar-radar payload