Flash Lidar Detector Options for Coherent Imaging

By

Paul McManamon

Exciting Technology LLC & University of Dayton
EXciting Technology

Why Use Coherent lidar?
(Instead of direct detection)

• Can use poor detectors
 – Because a strong LO hides noise
 – I think this was the main first main reason for coherent lidar
 • Most of the lidars in the 70’s and 80’s were CO2 coherent lidars for this reason
• Direct, highly accurate, measurement of velocity
 – Can do a precise measurement of velocity
 – I think this was the second main reason for using coherent lidars
• Can directly measure the return field
 – I think this is the main future reason for using coherent lidar
• Easy to use a high duty cycle waveform
 – Can use FM chirp, or pseudo random codes, instead of pulses
 – Efficient cw lasers are easier to build
What Can I do if I Can Measure the field?

• **Lensless imaging**
 – Can capture field in pupil plane, or image plane, or anywhere in between
 • Once you have the field you can flip between pupil and image plane using a Fourier transform

• Can digitally focus after the fact

• Can process (zoom in) on any part of the illuminated area

• Can compensate for the atmosphere after field capture
 – Using a sharpness metric, or another approach
 – Can even compensate for extended turbulence

• **Can Synthesize larger virtual apertures**
 – Can coherently combine sub-apertures to form a larger pupil plane array aperture
 – Can using a moving aperture to synthesize a large aperture
Flash Imaging Detector Options

• **Temporal Heterodyne Imaging**
 – Gieger Mode APDs, GMAPDs, InGaAs
 – Linear Mod APDs, LMAPDs
 • LMAPDs, HgCdTe
 • LMAPDs, InGaAs
 – Pin Diode Camera

• **Spatial Heterodyne Imaging**
 – Can use low bandwidth framing cameras

Temporal Heterodyne
- LO is offset in frequency so you can measure plus and minus frequencies
- Detector can respond to the beat frequency between the return and the LO – can measure phase

Spatial heterodyne
- LO is same frequency, but offset in angle
- Fringes across the detector array allow measurements of spatial phase variations
 -- Uses framing camera with low bandwidth
What do We Want in a Flash Camera for Coherent Imaging?

• **Common Camera Desires**
 – High sensitivity so LO power does not need to be high
 – Relatively large formats
 • From 32 x 32 up to 256 x 256, or more
 – Rugged, cheap, small, low power consumption

• **For Temporal heterodyne**
 – Enough samples in a row to sample the temporal beat frequency between the LO and return signal
 – High enough sample rate to sample any motion of interest
 – Full waveform sampling would be nice, but not required
 • Burst sampling is okay
 – AC coupling if a strong LO is used
 • Or will lose dynamic range

• **For spatial heterodyne (Digital Holography)**
 – High enough spatial sampling to sample the beat frequency between the return signal and the LO (depends on angle between the two)
 – Large Formats
 – Cheap
Why do we care about the power of the LO, and Gain?

• Gain can reduce noise

\[SNR = \frac{G^2 R_\lambda^2 P_s}{2eBG^2 FR_\lambda \left[P_s + P_{LO} + P_{bk} + P_{dks} \right] + 2eBi_{dks} + 4(ktB / R_L)} \]

 – With a strong LO we can eliminate noise

• Excess Noise Factor, F, Limits Gain in LMAPDs
 – HgCdTe has low F (about 1.3) due holes not ionizing during gain
 – GMAPDs are digital, so F is not important

• Prefer a weak LO to save power and cooling
 – LO can be weak if we do not need it for sensitivity
 – LO has to be weak for GMAPDs, or lidar will be blind
GMAPD Comments

• Pulse output is the same avalanche no matter how many photons hit the detector
 – Noise on the amplified signal does not matter. Each detection counts as 1
• Dead time after avalanche
 – 400 nsec – 1 µsec
 – Causes issues with high brightness background
• TE cooling
• Simple read out circuits, but more complex processing
• Low noise, so easy to predict performance
• Cost is moderate
• Commercial FPAs are available
Geiger Mode APD Heterodyne

• MIT/LL has done heterodyne using Geiger mode APDs*
• Made LO about the same intensity as the return signal
• Beat between LO and signal varies with time, resulting in a variation of # of detections
• Grouped pixels into 4 x 4 arrays to get more statistics

GMAPDs for Coherent Flash Imaging

- **Current commercially available arrays**
 - 32 x 32 array that will frame at 186 Khz
 - 32 x 128 array that will frame at 105 Khz

- **Projected array**
 - Asynchronous read out 32 x 32 array that will “frame” at about 1 Mhz
 - Limited by detector dead time
 - Can group detectors into super pixels to increase frame rate, but with fewer pixels

- **Digital read out**
- **Simple ROIC**
- **Continuous read out (full waveform)**
- **Detect beat frequency by changing probability of detection**
- **Ghz class bandwidth**
- **Dynamic range issue** (my opinion)
 - LO and signal must be about the same intensity
 - I worry about highly variable reflectivity in a scene

- **Bright sun can still be an issue**
 - Normally don’t worry about background for heterodyne system
 - Want a narrow filter, say 1-1.5 nm

- **Low power LO** nice, from a power and cooling perspective
Filter Widths vs traditional Heterodyne linewidths

• In frequency lasers are broad band
 – For 1.55 μm

<table>
<thead>
<tr>
<th>Δλ (nm)</th>
<th>Δf (Ghz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>126</td>
</tr>
<tr>
<td>10</td>
<td>1265</td>
</tr>
<tr>
<td>100</td>
<td>12650</td>
</tr>
</tbody>
</table>

\[B = -\frac{c}{\lambda^2} \Delta\lambda \]

– Normally why bother with a 1 nm (126 Ghz) filter when doing heterodyne?
 • Your detector might have a 100 Mhz- 3 Ghz bandwidth
What I would like in a GMAPD Coherent Flash Imaging Camera

• The soon to be available 32 x 32 asynchronous camera is really nice.
 – But if I use 4 x 4 super pixels it would only be an effective 8 x 8 array

• Make is 128 x 128 and I’d be fairly happy
 – Even larger would be nice from a super pixel point of view
 – Even at 128 x 128 if I use 4 x 4 super pixels it would only be an effective 32 x 32 array

• Of course it goes without saying that cheaper and smaller are nice
Bandwidth Limitations

- LMAPDs often have bandwidth limitations around 100 Mhz
 - This has to do with developing the read outs
- A restriction, but not a big deal for coherent imaging
 - Can do stretch processing for higher range resolution
InGaAs Pin Diodes and LMAPDs for Coherent Flash Imaging

• I plan on liking these when they are available with the right read out rates
 – Currently available cameras are marginal for coherent imaging
 – Price of cameras is nice
 • Not the right read out rate, but I am paying $54K for a 128 x 128 LMAPD

• Even pin diode cameras are okay if they are AC coupled
 – It will mean a stronger LO
 – AC coupling means we do not lose dynamic range with a strong LO
 – Disadvantage of AC couple is no passive viewing
 • Passive scene does not change enough to see with AC coupling
InGaAs LMAPD Comments

- Low to moderate gain with a single stage (5-20)
- Research in multi-stage InGaAs LMAPDs with higher gain
 - Can have an effective k of .04, could approach HgCdTe performance
- Complex ROICs, especially if multiple ranges are captured per detector
 - For coherent imaging you can either operate in burst mode with multiple range samples to sample the waveform, or have a high frame rate for full waveform sampling
- Can make a direct detection image on a single pulse
- Simple processing to make a direct detection image
- TE cooling, or temp controlled
- Moderate to low cost.
- Commercial pin diode arrays and low gain LMAPDs are available
 - $54K for a moderate gain 128 x 128 array, but not the right read out rate for flash coherent imaging
- Modelling of direct detection is more complex, due to low gain
 - Must keep track of noise sources
- Requires a high energy per pulse laser for direct detection
Available InGaAs LMFPAs

- The Voxtel VX 819 captures 24 samples
 - 2 -16 nsec sample rate
 - Limits the range of LO frequency offsets
 - 94 hertz frame rate
 - This is really low for most applications
 - 990 hertz frame rate for 32 x 32 format
 - 2075 hertz frame rate for 16 x 16 format
 - 128 x128 format
 - 100 Mhz Bandwidth
 - A jitter of < 100 psec, and a 50 μm pitch
- Can be interesting to sample lower frequencies in vibrometry, using an LO that is not offset very far in frequency
 - 24 samples @ 2.5 nsec
 - 18 Mhz beat freq
More frequency Sampling using the VX819 Camera

- @ 11 Mhz
- A sum of 11 Mhz, 7 Mhz, 5 Mhz, and 3 Mhz
Can use pseudo random codes

- Assume a 10 nsec chip length and 4 chips in a code, with a code of 1’s and 0’s
- 24 samples is restrictive

-10 Mhz beat freq
-3 nsec samples of waveform

- 10 Mhz beat freq
- 4 sec samples
What I want in a InGaAs LMAPD camera for Coherent flash imaging

• Challenge will be read outs.
• Burst mode
 – At least 50 samples in range
 – At least 32 x32, but prefer 128 x128
 – At least 10 KHz frame rate
• Continuous
 – As high as possible frame rate
 – Ideally chose 32 x 32 or 128 x128, with lower frame rate for larger camera
• Can go “high” gain multi-stage avalanche with DC coupling
• With single stage coupling I’d like to chose AC or DC coupling
• Prefer costs < $60K, and of course small
HgCdTe LMAPD Comments

- Pulse output is linearly related to # of input photons
- HgCdTe can have gain as high as 2000 without high excess noise
 - $k=0$, $F \approx 1.3$
- Can make a 3D image on a single pulse
- Images are formed quickly and with limited processing
- Need to use relatively high energy per pulse lasers
- ROICs are complex, especially for many range captures per pixel
- Have to run colder with a 5 µm cut off FPA, so need a larger cooler (nominal coke can size)
 - Research in shorter wavelength cut off/high temperature HgCdTe
 - Shorter wavelength cut off would require higher voltage drivers
- Can passively image in the MWIR and NIR
- HgCdTe LMAPDs are not commercial products
 - Currently expensive
HgCdTe LMAPD Arrays

• Exact characteristics of arrays have not yet been publically released
• ROIC limitations will be similar to InGaAs arrays
 – Complex ROICs
• Sensitive arrays, so can use a low power LO
What I want in a HgCdTe LMAPD camera for Coherent flash imaging

• Challenge will be read outs.
• Burst mode
 – At least 50 samples in range
 – At least 32 x32, but prefer 128 x128
 – At least 10 Khz frame rate
• Continuous
 – As high as possible frame rate
 – Ideally chose 32 x 32 or 128 x128, with lower frame rate for larger camera
• Low LO power because of great sensitivity
• Prefer a commercial product to get costs down
• Of course keep minimizing cooler size, unless can go to lower \(\lambda \) cut off, and higher operating temperature
Spatial Heterodyne

- We are in good shape for Flash Spatial Heterodyne
- Could combine with OTOF lidar
 - OTOF lidar can do traditional range resolution
 - mm to feet
 - Spatial heterodyne can do precise range resolution using two wavelengths, and synthetic wavelength.
 - The two could be combined for interesting results
 - Both use low bandwidth framing cameras
- Huge format visible cameras are available
 - My phone can take video at 24 frames per second with a format of 3840 x 2160
- Larger formats are becoming available for the near IR
 - 256 x 320 and up
Voxtel camera for Spatial Heterodyne

- 64 x 64 format
 - Large enough if used in an array of apertures
- Burst of 18 frames in a snapshot mode
 - Can speckle average
 - 50 nsec – 100 nsec sample time
 - Want laser pulse width narrower than the sample time
 - 10 Mhz sample rate during the burst
- 250 hertz frame rate for the bursts.
- Estimate an input-referred read noise of about 125 electrons RMS, based on the circuit simulation
oTOF Lidar

- Could combine with spatial heterodyne
- Uses commercial 2D cameras
- Makes a 3D image on a single pulse
- Uses Pockels cell to rotate polarization, and ratio of intensity in corresponding detectors to measure range
 - Need to align two cameras well
- Very cheap and capable visible cameras
- NIR cameras cheaper than high bandwidth cameras
- High grey scale
- Provides range average in a mixed pixel

Figure 10: Diagram of the LIMARS polarization based 3D Flash Ladar concept.
Summary

- Multiple GMAPD arrays can be used for flash coherent temporal heterodyne imaging
 - Framing 32 x 32, 32 x 128 GMAPDs are available NOW, and soon an asynchronous 32 x 32.
 - Low dynamic range coherent imaging
 - TE cooled
 - I’d like an asynchronous 128 x 128, or even larger
 - **If I was building a flash coherent imager now, and did not have significant backscatter, background, or variable target reflectivity issues this would be a good choice**

- InGaAs LMAPDs
 - I think I’ll really like these when available
 - Will not have the dynamic range or background/backscatter issues of GMAPDs
 - I hope someone pays to make a high rep rate camera with some sample depth (at least 36 samples. I prefer 50 samples)
 - They should be relatively inexpensive
 - Can be TE cooled
 - Moderate to good sensitivity, so moderate power LOs

- HgCdTe LMAPDs
 - Sensitive, so can use low power LOs
 - Need to be cooled
 - Can’t comment on what is available right now, but inherently like sensitivity and dynamic range. Many similar limitations to other LMAPDs, but more sensitive

- Spatial heterodyne FPAs
 - Flash imaging cameras available NOW.
 - Same cameras as for NIR passive imaging, or could use 2D imaging cameras
 - Specifically designed APD from Voxtel for AFRL