Demonstration of Range & Doppler Compensated Holographic Ladar

CLRC 2016
Presented by Piotr Kondratko

Jason Stafforda
Piotr Kondratkob
Brian Krauseb
Benjamin Daporea
Nathan Seldomridgeb
Paul Sunib
David Rabba

a AFRL Sensors Directorate
b Lockheed Martin Advanced Technology Center, Coherent Technologies
Outline

• Digital Holography Overview and Applications

• Study Problem and Objective

• System Architecture and Design

• Controller Software System Overview

• Tracker Performance

• Field Tests and Results
Digital Holography Background

- Form holograms by interfering signal with off-axis reference beam
 - Use COTS focal plane arrays (CCD/CMOS) to record data
- Numerically process & filter to obtain complex-valued images
- Access to image phase permits advanced functions
 - Aberration correction / wavefront sensing, multi-aperture / synthetic aperture imaging, 3D and vibration imaging

DH System Implementation
(Bi-static or Monostatic)

Transmitter

Receiver

Laser

FPA

Local Oscillator

Pupil Plane

Hologram

2D FFT

Pupil

LO

Complex Image

Phase Correction

Sharpened Image
Applications of Digital Holography

Combined Coherent Imaging
- QL sensitivity → less laser power or > range
- Corrected imaging → improved imaging
- Dual wavelength → advanced imaging

Aberration Correction & WFS
- Robust against scintillation
- Does not require a separate illuminator
- Multi-plane WFS → deep turbulence correction

Multi & Synthetic Aperture Imaging
- DH enables phased array imaging
- High resolution imaging
- Lower SWaP

3D, Vibration & Polarimetric Imaging
- 3D range & pose
- Vibration and Polarization Imaging
- Biometrics ID
The Problem Statement

Relative motion between ladar and target \rightarrow integration efficiency: η_{χ}

DH system efficiency loss associated with
- Temporal Signal and LO alignment $\rightarrow \tau$
- Frequency difference due to Doppler $\rightarrow f_D = 2v/\lambda$

$\eta = [1 - (\tau / t_p)]$

$\eta = sin^2c(2\pi f_D t_p)$

$CNR = \eta \frac{\lambda^3}{hc} T^2 \left(\frac{\rho}{\Omega} \right) \frac{P_{tp}}{\pi \omega^2}$
Demonstration Objective

- Demonstrate range and Doppler compensation technique for a moving target
- **Location:** Wright Patterson AFB
- **Time:** May 2015
- **CNRs:** ~8 to 24 dB (pulse width and target reflectivity)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Peak Power</td>
<td>500 mW</td>
</tr>
<tr>
<td>Wavelength (λ)</td>
<td>1545 nm</td>
</tr>
<tr>
<td>Pulse width (t<sub>p</sub>)</td>
<td>100 - 300 ns</td>
</tr>
<tr>
<td>Target max speed (v)</td>
<td>±~20 m/s (±45 mph)</td>
</tr>
<tr>
<td>Target range (R)</td>
<td>200-1000 m</td>
</tr>
<tr>
<td>Target reflectivity (ρ/Ω)</td>
<td>Retro Tape 1: 89 (sr<sup>-1</sup>)</td>
</tr>
<tr>
<td></td>
<td>Retro Tape 2: 8 (sr<sup>-1</sup>)</td>
</tr>
<tr>
<td>Aperture</td>
<td>27.5 cm (11”)</td>
</tr>
<tr>
<td>System efficiency (η)</td>
<td>6%</td>
</tr>
<tr>
<td>One-way atmospheric transmission (T)</td>
<td>96%</td>
</tr>
</tbody>
</table>
DH Imager System Architecture

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>11.9 m</td>
</tr>
<tr>
<td>FOV at 500 m</td>
<td>32 cm</td>
</tr>
</tbody>
</table>

Physical layout of designed system

- Optical axis height above breadboard determined by telescope: 6 - 7"
- Transmit lens pair ("beam expander") expands beam for safety, and allows flexibility to adjust divergence for beam size on target
Functional Diagram of DH System

Acquire Range
- Direct Detection
- Laser Range Finder

Filter Noise and Estimate (Kalman)
- Target Distance
- Target Velocity

Adjust the DH System $f_D = 2v/\lambda$
- Frequency AOFS
- Pulse Positions
Field Testing and Target

DH Range & Doppler Demonstration System

Target on Runway

Illumination Scheme
Tracker Performance

Range:
1 cm → 67ps (small fraction from 300ns pulse)

Doppler:
Measured > 1 m/s → 55% Efficiency
Filtered ~0.05 m/s → 99% Efficiency

Range less important than Doppler filtering
DH Ranging Results

- Approximate Vehicle Target Velocities: 5, 10, 13, 16, 24 m/s

- Model includes range dependent vignetting

\[CNR = \eta \frac{\lambda^3}{hc} T^2 \left(\frac{\rho}{\Omega} \right) \frac{P t_p}{\pi \omega^2} \]

No CNR loss due to range and Doppler was observed
System configured (automated) to validate range and Doppler ambiguity function

- target is fixed at range
- sweep programmed range and Doppler

\[\eta \chi(t, f) = \frac{|\chi_{u,v}(t, f)|^2}{E_u E_v} \]

\[T = \begin{cases}
T_v & t_d \leq (T_u - T_v) / 2 \\
(T_u + T_v) / 2 - t_d & (T_u - T_v) / 2 < t_d \leq (T_u + T_v) / 2 \\
0 & (T_u - T_v) / 2 < t_d
\end{cases} \]

\[\eta \chi(t_d, f_d) = \frac{T^2}{T_u T_v} \text{sinc}^2(f_d T) \]
Summary and Future Work

• Digital Holography Ladar → Demonstration of range and Doppler compensation

• System capability → complete efficiency recovery at ~24 m/s vehicle target speeds from ~200-700m

• Demonstration confirmed range and Doppler ambiguity model

Future Work:

• Range and Doppler compensation for multi-aperture DH RX/TX systems for ground and air platforms

Contact Information:

Jason Stafford: jason.stafford.2@us.af.mil
Peter Kondratko: piotr.k.kondratko@lmco.com
Software and Timing Architecture

Host PC
- **HOST Main**
 - 20 Hz Non-Deterministic
 - Control the Real-Time States
 - Display Data
 - Log Data

Real-Time Controller
- **RT Main: Acquisition, Track, & Point**
 - 50 Hz Deterministic
 - ULS Range
 - Filter and Track
 - Send Range Track Data to DG535 Thread
 - Send Velocity Data to AO Thread
 - Send Info to Host

Data Producer
- 50 Hz Non-Deterministic
 - Receive data and status from the real-time system
 - Plot data to the user

Data Logger
- As-fast-as-possible Non-Deterministic
 - Log data and status to disk

DG-535 Thread (GPIB)
- 25 Hz Non-Deterministic
 - Update All Delays (In Standby)
 - Range Delay Calculation
 - Send Delay Data to DG535 on Channel C

AO Thread (DAQmx)
- 50 Hz Deterministic
 - Doppler Calculation
 - Send AO Data to DAQ
 - Receive Ack

States:
- Initialize
- Error
- Standby
- Acquire Only
- Acquire&Track
- Stop

States:
- Initialize
- Standby
- Track
- Error
- Stop

Doppler Compensation Demonstration Timing Diagram

- T0
- AB
- TX-AOM
- CD
- LO-AOM
- DG535-1
- AB-Camera
- Cam. Integration

- 0.3us
- Track Range